

MEMORANDUM

Date: August 5, 2016 BKF Job Number: 20120185-10

Deliver To: Will Anderson

Company: City of San Bruno – Public Services Dept.

From: Brian Scott, BKF Engineers

Subject: Glenview Terrace – Storm Drainage Report

This memo presents the proposed storm drainage calculations for the Glenview Terrace project. The memo includes a hydrology and hydraulics analysis, stormwater treatment calculations and Bay Area Hydrology Model (BAHM) analysis.

1. EXISTING CONDITIONS

The existing site is approximately 3.28 acres. The southern portion of the site was a gas station that was demolished several years ago. It is currently an open field. The northern portion is a church, residential house, and surface parking lot. The northeast area of the site is a steep slope that is heavily wooded.

Runoff from the southern portion surface flows towards San Bruno Avenue where it enters the gutter system and flows easterly and is eventually collected in a City catch basin.

On the northern portion of the site, runoff from the church and parking lot surface flows to the gutter system on Glenview Avenue. The gutter conveys flows north along Glenview Avenue to a City catch basin. Runoff from the residential house and the wooded area surface flows to the east into the canyon area.

2. PROPOSED CONDITIONS

The proposed project consists of a 29-unit subdivision with a network of streets and sidewalks. A new below-grade drainage system will be installed for the project. The private, onsite drainage systems will connect to the City drainage systems in San Bruno Avenue and Glenview Avenue. To maintain the existing drainage patterns, the site grading and drainage design conveys flows from the southern portion of the site (DA-02) to a new storm drain line in San Bruno Avenue. Runoff from the new improvements in the northern portion of the site (DA-01) is conveyed to a new storm drain line in Glenview Avenue. The drainage pattern from the existing slope to the east of DA-02 will not be modified.

3. HYDROLOGY AND HYDRAULIC CALCULATIONS

Per the San Bruno municipal code section 12.44.090, the storm drain system is designed to convey the 25-year storm event. Storm drain pipe flows and capacity are evaluated using the StormCAD computer model by Haestad Methods. The program uses the Rational Method to calculate runoff

flows and Manning's Equation to analyze flow in pipes. The following describes the variables used by the program:

Runoff Coefficient (Per San Bruno Municipal Code)

- The runoff coefficient for landscaped areas is 0.35.
- The runoff coefficient for paved areas and roofs is 0.95.

Rainfall Intensity Duration Frequency Curve

Rainfall intensities were obtained from the Crestmoor (Glenview) Neighborhood Reconstruction project. The 25-year intensity, with a time of concentration of 10-minutes, equals 2.85 in/hr.

Drainage Area

The proposed drainage areas for the site are shown on Figure 1.

Time of Concentration

A minimum time of concentration of 10-minutes is used for this analysis.

Pipe Roughness

A Manning's roughness coefficient of 0.012 is used for PVC pipe.

Tailwater Elevation

For a conservative analysis, we assumed the existing City storm drain pipe at the point of connection is full and the starting tail-water elevation is the top of the pipe.

Hydraulic Grade Line

The 25-year hydraulic grade line (HGL) will be contained within the storm drainage system and at least 6-inches below the flow line elevation at catch basins.

Tables A1, A2 and A3 present the 25-year hydrology and hydraulic calculations. Figure 1 shows the StormCAD model pipe and node network.

4. STORMWATER TREATMENT

As required by the Municipal Regional Permit, runoff from newly created impervious surfaces will be treated prior to entering the City storm drain system. There will two large bioretention facilities to treat runoff. BMP#1 will treat runoff from DA-01 and BMP#2 will treat runoff from the DA-02. The size of the bioretention facilities has been calculated using the "Combination Flow and Volume Design Basis" as described in Chapter 5 of the San Mateo County C.3 Stormwater Technical Guidance.

In addition to providing stormwater treatment, the bioretention areas will also serve as detention basins to control the rate of runoff to meet the hydromodification requirements. As shown in

Tables A4 and A5, the ponding depths in the bioretention areas for the water quality storm event (0.2 in/hr) do not exceed 12-inches. For larger storm events, ponding depths in BMP #1 will exceed 12-inches to meet the hydromodification requirements.

5. BAY AREA HYDROLOGY MODEL (BAHM)

As required by the Municipal Regional Permit, the Project is required to attenuate runoff associated with the increase in runoff created by more impervious area. The BAHM program is used to analyze the Project's flows as prescribed in the Municipal Regional Permit (MRP). The goal of the HM program is to control the flow to match pre-project runoff flow rate and duration from 10 percent of the pre-project 2-year peak flow up to the pre-project 10-year peak flow. Stormwater attenuation will be achieved in the stormwater treatment BMPs by adding a riser structure with or without orifices, sizing larger pipes for storage, adding a weir structure with a small orifice, and adjusting the depth of the BMP as necessary.

The project is broken into two Points of Compliance (POC) for HM evaluation. The POCs are consistent with the pre-project runoff drainage pattern. POC 1 corresponds with the DA-01 improvements which drain to BMP #1 in the post-project condition and POC 2 corresponds with the DA-02 improvements which drain to BMP #2 in the post-project condition. The pre-project land uses that were modeled are shown on sheets C3.0-C3.1 of the Vesting Tentative Tract Map (VTTM). Sheet C3.0 shows the DA-01 site as undeveloped. It should be noted that a gas station existed on the DA-01 site for many years and was removed in the early 2000s. Since the DA-01 site was previously developed and generated more runoff to the City storm drain system than an undeveloped site, our analysis is very conservative. Post-project land uses modeled are shown on sheets C7.0-C7.1 of the VTTM.

Modeling results showing full compliance with the HM requirements for POC 2 and partial compliance for POC 1 are shown on the attached report, which is a direct output from the BAHM program.

Low Flow Issue

As shown in the attached report, HM for POC 1 has been met for the flow ranges 0.038 to 0.403 cfs, equivalent to 25 percent of the 2-year up to the 10-year peak flow. However, HM for POC 1 did not meet the flow ranges 0.014 cfs (6.3 gallons per minute - gpm) to 0.035 cfs (15.7 gpm), equivalent to 10 percent of the 2-yr and 25 percent of the 2-year peak flow, respectively.

These lower flow ranges cannot be detained for this project due to the practical limitations of detaining very small flow rates. For example, the most downstream manhole for POC 1 contains a 24-inch high weir with a 1-inch diameter orifice at the bottom of the weir to restrict the flow. Even with a 1-inch diameter orifice, the lower flow rates listed above cannot be detained. If the size of the orifice is reduced less than 1-inch diameter, the orifice size becomes so small it will create a long term maintenance issue due to clogging.

HM Facilities

The size and number of orifices and riser heights were determined by the iterative BAHM modeling process to control the outflow of site runoff to match pre-construction rates. Design parameters for the risers and orifices (i.e. heights, orifice diameter, and number of orifices) are entered into the BAHM modeling program and the output is reviewed to check if the post-construction rate of runoff complies with pre-construction rates. This iterative process continues until the results are satisfactory.

The BMPs include the following facilities for HM compliance:

BMP #1

- 6-inch diameter riser 1.7-feet above surface flowline with three 1.5-inch orifices 0.5-feet above surface flowline
- 24-inch high weir structure with 1-inch diameter orifice in downstream manhole (with 46 lf of 24-inch diameter pipe for storage)
- The 0.5-feet height of the orifices was designed to allow for 5.8-inches of ponding (Per Table A4) for treatment purposes.

BMP #2

- 6-inch diameter riser 0.88-feet above surface flowline with no orifices
- 24-inch high weir structure with 2-inch diameter orifice in downstream drop inlet (with 110 lf of 24-inch diameter pipe for storage)
- The 0.88-foot height of the riser was designed to allow for 10.4-inches of ponding (Per Table A5) for treatment purposes.

The rim elevations of the drop inlet overflow structures were designed to be slightly higher than the risers for redundancy should the risers and orifices get clogged.

 $K:\MAIN\2012\120185\06\ Design\C\ Storm\ Drain\ System\Drainage\ Report\20160208_VTTM_Seventh\ Submittal\2016-02-19_Glenview\ Terrace_Storm\ Drainage\ Report\40cx$

0.80

TABLE A1 **GLENVIEW TERRACE** DRAINAGE AREAS

Pervious, C = 0.35 Impervious, C = 0.95

21384

DA-01

Drainage Area	Total Area (SF)	Total Area (AC)	Impervious Area (SF)	Pervious Area (SF)	C_{w}
DA 1-1	2301	0.05	1284	1017	0.68
DA1-2a	1996	0.05	1365	631	0.76
DA1-2b	2205	0.05	1283	922	0.70
DA1-3a	6410	0.15	3874	2536	0.71
DA1-3b	8129	0.19	3914	4215	0.64
DA1-4	17183	0.39	13308	3875	0.81
DA1-5	5307	0.12	3404	1903	0.73
DA1-6	2976	0.07	198	2778	0.39
	46507	1.07	28630	17877	0.72
MODELING MODIF	ICATIONS for DA	-01			
Drainage Area	Total Area (SF)	Total Area (AC)	Impervious Area (SF)	Pervious Area (SF)	C_w

15956

5428

0.49

DA-02

DA 1-2 & 4

Drainage Area	Total Area (SF)	Total Area (AC)	Impervious Area (SF)	Pervious Area (SF)	C_{w}
DA2-1	6920	0.16	5867	1053	0.86
DA2-2	7550	0.17	5660	1890	0.80
DA2-3a	6031	0.14	4293	1738	0.78
DA2-3b	2812	0.06	1291	1521	0.63
DA2-4	9402	0.22	5082	4320	0.67
DA2-5	9586	0.22	7534	2052	0.82
DA2-6	5125	0.12	3065	2060	0.71
DA2-8	1723	0.04	568	1155	0.55
DA2-9	9337	0.21	7710	1627	0.85
DA2-10a	6466	0.15	3656	2810	0.69
DA2-10b	8068	0.19	5455	2613	0.76
DA2-11	4442	0.10	378	4064	0.40
	77462	1.78	50559	26903	0.74

MODELING MODIFICATIONS for DA-02

Drainage Area	Total Area (SF)	Total Area (AC)	Impervious Area (SF)	Pervious Area (SF)	C_{w}
DA 2-1 & 2	14470	0.33	11527	2943	0.83
DA 2-4 & 5 & 9	28325	0.65	20326	7999	0.78

Redwood City, CA 94065

TABLE A2 GLENVIEW SAN BRUNO DRAINAGE CALCULATIONS 25 Year Storm Hydrology

N - 1 - (1)	0 1	•					0 1 11	0 1 11		0 1		
Node (1)	Ground	Sump	Inlet	Lateral	Inlet	Inlet		Cumulative		System		(2)
#	Elevation	Elevation	Area	Area	С	C*A	Area	C*A	Tc	Tc	Intensity	Discharge ⁽³⁾
	(ft) ⁽¹⁾	(ft)	(acres)	(acres)		(acres)	(acres)	(acres)	(minutes)	(minutes)	(in/hr)	(cfs)
Outfall 1												
I-2L-1	467.8	464.6	0.12		0.75	0.09	0.12	0.09	10.0	10.00	2.85	0.3
I-4	474.7	469.0	0.33		0.67	0.22	0.33	0.22	10.0	10.00	2.85	0.6
I-3	467.5	464.5	0.49		0.79	0.39	0.82	0.61	10.0	10.60	2.79	1.7
I-2	467.5	464.4	(N/A)	0.12	(N/A)	0.00	0.94	0.70	5.0	10.63	2.78	2.0
I-1	467.0	464.1	0.05		0.68	0.03	0.99	0.73	5.0	10.81	2.77	2.0
Outfall 2												
I-8	464.0	459.7	1.07		0.72	0.77	1.07	0.77	10.8	10.80	2.77	2.2
I-7	466.0	457.5	(N/A)		(N/A)	0.00	1.07	0.77	5.0	10.84	2.76	2.2
I-6	460.6	455.6	(N/A)		(N/A)	0.00	1.07	0.77	5.0	10.87	2.76	2.1
Outfall 3												
CB-2LL-1	446.0	443.3	0.04		0.55	0.02	0.04	0.02	10.0	10.00	2.85	0.1
CB-2L-1	448.8	443.5	0.20		0.72	0.14	0.20	0.14	10.0	10.00	2.85	0.4
CB-6	461.9	455.9	0.12		0.66	0.08	0.12	0.08	10.0	10.00	2.85	0.2
CB-5L-1	466.0	459.7	0.33		0.69	0.23	0.33	0.23	10.0	10.00	2.85	0.7
CB-5	457.1	451.1	(N/A)		(N/A)	0.00	0.33	0.23	5.0	10.28	2.82	0.7
CB-4	454.9	448.9	0.65		0.77	0.50	0.98	0.81	10.0	10.35	2.81	2.3
CB-3	446.1	443.1	(N/A)		(N/A)	0.00	0.98	0.81	5.0	10.47	2.80	2.3
CB-2	445.2	442.8	(N/A)	0.24	(N/A)	0.00	1.22	0.97	5.0	10.57	2.79	2.7
CB-1	444.9	442.6	0.33		0.83	0.27	1.55	1.25	10.0	10.63	2.79	3.5
Outfall 4												
CB-9	442.9	438.8	1.78		0.73	1.30	1.78	1.30	10.7	10.70	2.78	3.6
CB-8	443.0	438.6	(N/A)		(N/A)	0.00	1.78	1.30	5.0	10.74	2.77	3.6
CB-7	443.0	437.4	(N/A)		(N/A)	0.00	1.78	1.30	5.0	11.13	2.73	3.6

Notes

- (1) See Exhibit for node locations
- (2) ft = feet, in/hr = inches/hour rainfall, cfs = cubic feet per second
- (3) Discharge is from the Rational Method, Q = CIA
- (4) Based on a 10-minute time of concentration
- (5) Intensity Duration Frequency curve (IDF) taken from other San Bruno Project

TABLE A3 GLENVIEW SAN BRUNO DRAINAGE CALCULATIONS 25 Year Storm Hydraulics

Pipe	Upstream	Downstream	Total (3)	Capacity @	Pipe (5)		Constructed	Pipe		nvert		und/Rim		HGL	(2)	Upstream	
#	Node	Node	Discharge (3)	Constructed	Size	Length	Slope	Roughness		evation		vation		ation (4)	Freeboard (2)	Cover	Velocity
			(cfs) (1)	Slope (cfs)	(inches)	(feet)	(ft/ft)	(Mannings n) (A)	Upstream	Downstream	Upstream	Downstream	Upstream	Downstream	(feet)	(feet)	(ft/s)
Outfall 1																	
P-2L-1	I-2L-1	I-2	0.3	3.1	12	32	0.006	0.012	464.60	464.40	467.80	467.50	465.24	465.24	2.6	2.2	2.4
P-4	I-4	I-3	0.6	6.1	12	180	0.025	0.012	469.00	464.50	474.70	467.50	469.33	465.34	5.4	4.7	5.0
P-3	I-3	I-2	1.7	3.9	12	10	0.010	0.012	464.50	464.40	467.50	467.50	465.29	465.29	2.2	2.0	4.8
P-2	I-2	I-1	2.0	3.1	12	46	0.007	0.012	464.40	464.10	467.50	467.00	465.22	465.13	2.3	2.1	4.2
P-1	I-1	Outfall-1	2.0	2.1	12	33	0.003	0.012	464.10	464.00	467.00	465.00	465.09	465.00	1.9	1.9	3.1
Outfall 2																	
P-8	I-8	I-7	2.2	75.8	24	23	0.096	0.012	459.70	457.50	464.00	466.00	460.21	458.15	3.8	2.3	10.6
P-7	I-7	I-6	2.2	19.0	15	22	0.086	0.013	457.50	455.60	466.00	460.60	458.08	456.30	7.9	7.3	10.3
P-6	I-6	Outfall-2	2.1	14.6	15	352	0.051	0.013	455.60	437.70	460.60	442.20	456.18	438.95	4.4	3.8	8.5
Outfall 3																	
L-2LL-1	CB-2LL-1	CB-2	0.1	0.7	6	37	0.014	0.012	443.30	442.80	446.00	445.20	443.76	443.75	2.2	2.2	2.2
L-2L-1	CB-2L-1	CB-2	0.4	4.2	12	59	0.012	0.012	443.50	442.80	448.80	445.20	443.77	443.76	5.0	4.3	3.4
L-6	CB-6	CB-4	0.2	11.4	12	80	0.088	0.012	455.90	448.90	461.90	454.90	456.10	449.64	5.8	5.0	5.8
L-5L-1	CB-5L-1	CB-5	0.7	10.2	12	123	0.070	0.012	459.70	451.10	466.00	457.10	460.04	451.48	6.0	5.3	7.3
L-5	CB-5	CB-4	0.7	10.3	12	31	0.071	0.012	451.10	448.90	457.10	454.90	451.43	449.66	5.7	5.0	7.3
L-4	CB-4	CB-3	2.3	10.8	12	74	0.078	0.012	448.90	443.10	454.90	446.10	449.55	443.89	5.3	5.0	10.9
L-3	CB-3	CB-2	2.3	3.7	12	32	0.009	0.012	443.10	442.80	446.10	445.20	443.75	443.78	2.4	2.0	5.0
L-2	CB-2	CB-1	2.7	4.1	12	18	0.011	0.012	442.80	442.60	445.20	444.90	443.65	443.61	1.6	1.4	5.6
L-1	CB-1	Outfall-3	3.5	4.5	12	44	0.014	0.012	442.60	442.00	444.90	443.00	443.40	443.00	1.5	1.3	6.3
Outfall 4																	
L-9	CB-9	CB-8	3.6	8.1	15	15	0.013	0.012	438.80	438.60	442.90	443.00	439.57	439.23	3.3	2.9	6.4
L-8	CB-8	CB-7	3.6	23.7	24	128	0.009	0.012	438.60	437.40	443.00	443.00	439.27	438.20	3.7	2.4	5.5
L-7	CB-7	Outfall-4	3.6	16.5	15	40	0.065	0.013	437.40	434.80	443.00	443.00	438.16	436.05	4.8	4.4	10.7

- Notes
 (1) ft = feet, cfs = cubic feet per second, ft/s = feet per second
 (2) Freeboard is HGL (Hydraulic Grade Line) below Rim of Inlet
 (3) Discharge is from the Rational Method, Q = CIA
 (4) Downstream tailwater set to Crown of Pipe

Worksheet for Calculating the Combination Flow and Volume Method

Instructions: After completing Section 1, make a copy of this Excel file for each Drainage Management Area within the project. Enter information specific to the project and DMA in the cells shaded in yellow. Cells shaded in light blue contain formulas and values that will be automatically calculated.

4.0	D 1 11 6 11					
	Project Information					
	Project Name:	Glenview Terrace			nere are based on the combir ne Countywide Program's C.3	
	City application ID:			,	nted below are explained in S	
	Site Address or APN:	2880 San Bruno Ave			are included in this file, in th	
	Tract or Parcel Map No:	TM13-001		from Chapter 5".		
	Rainfall Region	6				
1-6	Region Mean Annual Precipitation (MAP)	20.10				Click here for map
1-7	Site Mean Annual Precipitation (MAP)	34				
1.0		MAD adiu	istmont factor is autom	natically calculated as:	1 40	
1-8	(The "Cite Mas	-	stment factor is autom	•	1.69	<u> </u>
	(The Site Mea	n Annual Precipitation (MAP)" is divide Refer to the map in Appendix C				
2.0	Calculate Percentage of Impervious S	Surface for Drainage Manager	ment Area (DMA)			
	Name of DMA:	DMA-1	nontra od (Biviri)			
2 1	For items 2-2 and 2-3, enter the areas in square		DMA			
	For items 2-2 and 2-3, enter the areas in square			I]	
	Type of Surface	Area of surface type within DMA	Adjust Pervious	Effective Impervious		
	3 F · · · · · · · · · · · · · · · · · · ·	(Sq. Ft.)	Surface	Area		
2-2	Impervious surface	28,630	1.0	28,630		
2-3	Pervious surface	17,877	0.1	1,788		
	Total DMA Area (square feet) =	46,507			I	
2-4			Impervious Area (EIA)	30,418	Square feet	
2-4		Total Ellective	impervious Area (EIA)	30,410	Square reet	
3.0	Calculate Unit Basin Storage Volume	in Inches				
	Table 5-3. Unit Basin Storage Volumes in	nches for 80 Percent Capture Usin	g 48-Hour Drawdowr	ns, based on runoff co	efficient	
	, and the second	Station, and Mean Annual	Runoff]		
	Region	Precipitation (Inches)	Coefficient of 1.0			
	1	Boulder Creek, 55.9"	2.04"			
	2	La Honda, 24.4"	0.86"			
	3	Half Moon Bay, 25.92"	0.82"			
	4	Palo Alto, 14.6"	0.64"			
	5	San Francisco, 21.0"	0.73"			
	6	San Francisco airport, 20.1"	0.85"			
	7	San Francisco Oceanside, 19.3"	0.72"			
3-1			Halk basis skassas		0.85	1
J-1	(The coefficient for this method	l is always 1.0, due to the conversion of		volume from Table 5-3:	0.63	
	(The coefficient for this method	ris aiways 1.0, uue to the conversion of	arry randscaping to erre	ective impervious area.)		
3-2				basin storage volume:	1.44	Inches
	(The unit basin sto	rage volume [Item 3-1] is adjusted by $a_{ m l}$	pplying the MAP adjusti	ment factor [Item 1-8].)		_
3-3			Poquired Capture	Volume (in cubic feet):	3,645	Cubic feet
3-3	(The adjusted unit basin sizing	volume [Item 3-2] is multiplied by the L			3,043	Cubic feet
4 N	Calculate the Duration of the Rain Ev			·		
	Rainfall intensity		Inches per hour			
	,			nt Duration		
4-2	Divide Item 3-2 by Item 4-1	7.19	Hours of Rain Eve	ent Duration		
5.0	Preliminary Estimate of Surface Area	of Treatment Measure				
5-1	4% of DMA EIA (Item 2-4)	1,217	Square feet			
5-2	Area 25% smaller than Item 5-1 (i.e., 3%	1,217	oquai o root			
J-Z	of DMA EIA)	913	Square feet			
5-3	5. 5.v v	710	oquai o root			
0 0	Volume of treated runoff for area in Item 5-2	2,733	Cubic feet (Item 5-2	2 * 5 inches per hour * 1/	/12 * Item 4-2)	
, .				F. 7	,	
	Initial Adjustment of Depth of Surfac					
	Subtract Item 5-3 from Item 3-3			of runoff to be stored in		
6-2	Divide Item 6-1 by Item 5-2		· ·	runoff in surface pondir	-	
6-3	Convert Item 6-2 from feet to inches	11.98	Inches (Depth of stor	ed runoff in surface pon	ding area)	
6-4	If ponding depth in Item 6-3 meets your target					
	(Note: Overflow outlet elevation should be set I					

7.0 Optimize Size of Treatment Measure 7-1 Enter an area larger than Item 5-2 1393 Sq.f

1393 Sq.ft. (enter larger area if you need less ponding depth.)

4,173 Cubic feet (Item 7-1 * 5 inches per hour * 1/12 * Item 4-2)

7-3 Subtract Item 7-2 from Item 3-3 (528) Cubic feet (Amount of runoff to be stored in ponding area)
7-4 Divide Item 7-3 by Item 7-1 ---- Feet (Depth of stored runoff in surface ponding area)

7-5 Convert Item 7-4 from ft. to inches
 7-6 If the ponding depth in Item 7-5 meets target, stop here. If not, repeat Steps 7-1 through 7-5 until you obtain target depth.
 (Note: Overflow outlet elevation should be set based on the calculated ponding depth.)

8.0 Surface Area of Treatment Measure for DMA

Volume of treated runoff for area in Item 7-1

8-1 Final surface area of treatment	1,393	Square feet (Either Item 5-2 or final amount in Item 7-1)
-------------------------------------	-------	---

Worksheet for Calculating the Combination Flow and Volume Method

Instructions: After completing Section 1, make a copy of this Excel file for each Drainage Management Area within the project. Enter information specific to the project and DMA in the cells shaded in yellow. Cells shaded in light blue contain formulas and values that will be automatically calculated.

1 0 1	Draiget Information					
	Project Information	Glenview Terrace		The calculations presented	here are based on the combinat	ion flow and volume
	Project Name: City application ID:	Gienview Terrace			the Countywide Program's C.3 Te	
	Site Address or APN:	2880 San Bruno Ave			ented below are explained in Sec	
	Tract or Parcel Map No:	TM13-001		applicable portions of which from Chapter 5".	h are included in this file, in the	sheet named "Guidance
	Rainfall Region	6		iroin chapter 5.		
	Region Mean Annual Precipitation (MAP)	20.10				Click here for map
	• • • • • • • • • • • • • • • • • • • •	34				Click Here for map
1-7	Site Mean Annual Precipitation (MAP)	34				
1-8		MAP adiu	stment factor is autom	atically calculated as:	1.69	
1-0	(The "Site Mea	nn Annual Precipitation (MAP)" is divide		•		
	(The Site Wide	Refer to the map in Appendix C				
20	0-11-t- Dt	,		,	<u> </u>	
	Calculate Percentage of Impervious		ment Area (DIVIA)			
2-1	Name of DMA:	DMA-2				
	For items 2-2 and 2-3, enter the areas in square	e feet for each type of surface within th	e DMA.		-	
	Type of Surface	Area of surface type within DMA	Adjust Pervious	Effective Impervious		
	Type of Surface	(Sq. Ft.)	Surface	Area		
2-2	Impervious surface	50,559	1.0	50,559		
2-3	Pervious surface	26,903	0.1	2,690		
	Total DMA Area (square feet) =	77,462			_	
2-4	rotar 2777 to a (oquare root)		Impervious Area (EIA)	53,249	Square feet	
2-4		Total Lifective	Impervious Area (LIA)	33,247	_ Square reet	
3.0 (Calculate Unit Basin Storage Volume	in Inches				
	-					
	Table 5-3. Unit Basin Storage Volumes in	Inches for 80 Percent Capture Usin	g 48-Hour Drawdowr	ns, based on runoff c	oefficient	
		Station, and Mean Annual	Runoff			
	Region	Precipitation (Inches)	Coefficient of 1.0			
	1	Boulder Creek, 55.9"	2.04"			
	2	La Honda, 24.4"	0.86"			
	3 4	Half Moon Bay, 25.92"	0.82"			
	5	Palo Alto, 14.6" San Francisco, 21.0"	0.64"			
	6	San Francisco airport, 20.1"	0.73			
	7	San Francisco Oceanside, 19.3"	0.72"			
			·	J		
3-1				volume from Table 5-3.		
	(The coefficient for this method	d is always 1.0, due to the conversion of	any landscaping to effe	ective impervious area.)		
3-2			Adjusted unit	basin storage volume:	1.44	Inches
	(The unit basin sto	rage volume [Item 3-1] is adjusted by a				11101103
	·				/ 200	0 1 ' 6 ' 1
3-3	(The adjusted unit basin sizing	volume [Item 3-2] is multiplied by the D		Volume (in cubic feet):		Cubic feet
	· · · · · ·	<u> </u>	nvia Lia (item 2-4) and t	converted to cable reet)		
4.0 (Calculate the Duration of the Rain Ev					
4-1	Rainfall intensity		Inches per hour			
4-2	Divide Item 3-2 by Item 4-1	7.19	Hours of Rain Eve	ent Duration		
ΕΛI	Preliminary Estimate of Surface Area	of Treatment Measure				
	4% of DMA EIA (Item 2-4)					
		2,130	Square feet			
5-2	Area 25% smaller than Item 5-1 (i.e., 3%	1 507	Causes foot			
- 0	of DMA EIA)	1,597	Square feet			
5-3	Volume of treated runoff for area in Item 5-2	1 795	Cubic feet (Item 5-2) * 5 inches per bour * 1	1/12 * Itom 4 2\	
	volume of treated runoif for area in item 3-2	4,785	Cubic reet (item 5-2	5 inches per nour	1/12 Item 4-2)	
6.0	Initial Adjustment of Depth of Surfac	ce Ponding Area				
6-1	Subtract Item 5-3 from Item 3-3	1,595	Cubic feet (Amount	of runoff to be stored i	n ponding area)	
6-2	Divide Item 6-1 by Item 5-2	1.00	Feet (Depth of stored	runoff in surface pondi	ing area)	
	Convert Item 6-2 from feet to inches		Inches (Depth of stor		-	
	If ponding depth in Item 6-3 meets your target				,	
	(Note: Overflow outlet elevation should be set I			-		

7-1 Enter an area larger than Item 5-2 Volume of treated runoff for area in Item 7-1 Subtract Item 7-2 from Item 3-3 Divide Item 7-3 by Item 7-1 Convert Item 7-4 from ft. to inches 1-3 Subtract Item 7-5 meets target, stop here. If not, repeat Steps 7-1 through 7-5 until you obtain target depth. Sq.ft. (enter larger area if you need less ponding depth.) Cubic feet (Item 7-1 * 5 inches per hour * 1/12 * Item 4-2) Cubic feet (Amount of runoff to be stored in ponding area) Feet (Depth of stored runoff in surface ponding area) Inches (Depth of stored runoff in surface ponding area)

8.0 Surface Area of Treatment Measure for DMA

(Note: Overflow outlet elevation should be set based on the calculated ponding depth.)

0.0 Juliace Alica of Treatment Measure	TOT DIVIN	
8-1 Final surface area of treatment	2,132	Square feet (Either Item 5-2 or final amount in Item 7-1)

Redwood City Office

255 Shoreline Drive, Suite 200 Redwood City, CA, 94065 Tel 650.482.6300 Fax 650.482.6399

<u>Approximate Gutter Capacity</u> 5% Slope; Composite Cross Slope

d_1 [ft] =	0.50	Depth in feet (varies with flow)
d_2 [ft] =	0.42	Depth in feet (varies with flow)
w [ft] =	1.2	Width of gutter
T_s [ft] =	20.8	Width of street
x ₁ [ft/ft]	0.07	Slope of gutter
x ₂ [ft/ft]	0.02	Slope of street
S [ft/ft]	0.05	Slope of channel (H/L)
n =	0.01	Mannings Roughness Coefficient

Flow in Gutter (Qw):

$$Q_W = 0.56*(d_1^{8/3} - d_2^{8/3})*S^{1/2}/n*x_1$$

 $Q[cfs] = 8.18$

Flow in Street (Q_s):

$$\frac{Q_s = 0.56*(d_2^{8/3})*S^{1/2}/n*x_2}{Q [cfs] = 46.64}$$

Total Flow (Q):

$$Q = Q_w + Q_s$$

$$Q [cfs] = 54.82$$

Flow at Specified Depth

Flow at Specified Depth

Redwood City Office

255 Shoreline Drive, Suite 200 Redwood City, CA, 94065 Tel 650.482.6300 Fax 650.482.6399

<u>Approximate Gutter Capacity</u> 6% Slope; Composite Cross Slope

$d_1[ft] =$	0.50	
d_2 [ft] =	0.42	
w [ft] =	1.2	
T_s [ft] =	20.8	
x ₁ [ft/ft]	0.07	
x ₂ [ft/ft]	0.02	
S [ft/ft]	0.06	
n =	0.01	

Depth in feet (varies with flow)
Depth in feet (varies with flow)
Width of gutter
Width of street
Slope of gutter
Slope of street
Slope of channel (H/L)
Mannings Roughness Coefficient

Flow in Gutter (Q_w) :

$$Q_{w} = 0.56*(d_{1}^{8/3} - d_{2}^{8/3})*S^{1/2}/n*x_{1}$$

$$Q [cfs] = 8.96$$

Flow at Specified Depth

Flow in Street (Q_s):

$$\frac{Q_s = 0.56*(d_2^{8/3})*S^{1/2}/n*x_2}{Q \text{ [cfs]} = 51.10}$$

Flow at Specified Depth

Total Flow (Q):

$$Q = Q_w + Q_s$$

$$Q [cfs] = 60.05$$

Redwood City Office

255 Shoreline Drive, Suite 200 Redwood City, CA, 94065 Tel 650.482.6300 Fax 650.482.6399

<u>Approximate Gutter Capacity</u> 9% Slope; Composite Cross Slope

d ₁ [ft] =	0.50	
d_2 [ft] =	0.42	
w [ft] =	1.2	
T_s [ft] =	20.8	
x ₁ [ft/ft]	0.07	
x ₂ [ft/ft]	0.02	
S [ft/ft]	0.09	
n =	0.01	

Depth in feet (varies with flow)
Depth in feet (varies with flow)
Width of gutter
Width of street
Slope of gutter
Slope of street
Slope of channel (H/L)
Mannings Roughness Coefficient

Flow in Gutter (Qw):

$$Q_w = 0.56*(d_1^{8/3} - d_2^{8/3})*S^{1/2}/n*x_1$$

 $Q [cfs] = 10.97$

Flow at Specified Depth

Flow in Street (Q_s):

$$\frac{Q_s = 0.56*(d_2^{8/3})*S^{1/2}/n*x_2}{Q \text{ [cfs]} = 62.58}$$

Flow at Specified Depth

Total Flow (Q):

$$Q = Q_w + Q_s$$

$$Q[cfs] = 73.55$$

DRAWING NAME PLOT DATE:

Bay Area Hydrology Model PROJECT REPORT

Project Name: GT

Site Address: San Bruno Ave & Glenview Dr

City : San Bruno
Report Date : 2/16/2016
Gage : San Francisco
Data Start : 1959/10/01
Data End : 1997/09/30

Precip Scale: 1.29

BAHM Version:

PREDEVELOPED LAND USE

Name : Basin 1

Bypass: No

GroundWater: No

Pervious Land Use Acres
C D,Grass,Flat(0-5%) 1.05

Impervious Land Use Acres

Element Flows To:

Surface Interflow Groundwater

Name : Basin 2

Bypass: No

GroundWater: No

Pervious Land Use Acres
C D,Grass,Flat(0-5%) 1.62

Impervious Land Use Acres

Roads, Flat(0-5%) 0.44 Area 0.17

Element Flows To:

Surface Interflow Groundwater

Name : Basin 1

Bypass: No

GroundWater: No

Pervious Land Use

B, Urban, Flat(0-5%)

Acres
37

Impervious Land Use Acres

Roads, Flat(0-5%) 0.35 Area 0.35

Element Flows To:

Surface Interflow Groundwater

Bioretenti Surface 1, Bioretenti Surface 1,

Name : Basin 2

Bypass: No

GroundWater: No

Pervious Land Use

B, Urban, Flat(0-5%)

Acres
61

Impervious Land Use Acres

Roads, Flat(0-5%) 0.69 Area 0.48

Element Flows To:

Surface Interflow Groundwater

1,679Biore Surface 2, 1,679Biore Surface 2,

Name : Basin 3

Bypass: No

GroundWater: No

Pervious Land Use Acres
C D,Grass,Flat(0-5%) .42

Impervious Land Use Roof Area Acres 0.01

Element Flows To:

Surface Interflow Groundwater

Name : Bioretention Swale 1

Element Flows To:

Outlet 2 Outlet 1

Tank 1, ____

Name : Bioretenti Surface 1

Element Flows To:
Outlet 1 Outlet 2 Tank 1, Bioretention Swale 1,

Name : 1,679Bioretention Swale 2

Element Flows To:

Outlet 1 Outlet 2

Tank 1, _____

Name : 1,679Biore Surface 2

Element Flows To:
Outlet 2

Tank 1, 1,679Bioretention Swale 2,

Name : Tank 1 Tank Name: Tank 1

Dimensions
Depth: 24ft.
Tank Type: Circular
Diameter: 24 ft.
Length: 46 ft. Discharge Structure Riser Height: 2 ft. Riser Diameter: 24 in.

Orifice 1 Diameter: 1 in. Elevation: 0 ft.

Element Flows To:

Outlet 1 Outlet 2

Tank Hydraulic Table					
Stage(ft)	Area(acr)	Volume(acr-ft)	Dschrg(cfs)	Infilt(cfs)	
0.000	0.000	0.000	0.000	0.000	
0.267	0.005	0.001	0.014	0.000	
0.533	0.007	0.003	0.019	0.000	
0.800	0.009	0.005	0.023	0.000	
1.067	0.010	0.007	0.027	0.000	
1.333	0.012	0.010	0.030	0.000	
1.600	0.013	0.014	0.033	0.000	

1.867	0.014	0.017	0.036	0.000
2.133	0.014	0.021	0.987	0.000
2.400 2.667	0.015 0.016	0.025 0.029	4.968 10.65	0.000
2.933	0.017	0.033	17.61	0.000
3.200	0.017	0.038	25.65	0.000
3.467	0.018	0.043	34.65	0.000
3.733	0.018	0.047	44.50	0.000
4.000	0.019	0.052	55.14	0.000
4.267 4.533	0.019 0.020	0.057 0.063	66.52 78.59	0.000
4.800	0.020	0.068	91.32	0.000
5.067	0.021	0.073	104.7	0.000
5.333	0.021	0.079	118.6	0.000
5.600	0.021	0.085	133.1	0.000
5.867	0.022	0.090	148.2	0.000
6.133 6.400	0.022 0.022	0.096 0.102	163.7 179.8	0.000
6.667	0.022	0.102	196.4	0.000
6.933	0.023	0.114	213.5	0.000
7.200	0.023	0.121	231.0	0.000
7.467	0.023	0.127	249.0	0.000
7.733	0.024	0.133	267.5	0.000
8.000	0.024	0.139	286.3	0.000
8.267 8.533	0.024 0.024	0.146 0.152	305.6 325.3	0.000
8.800	0.024	0.152	345.5	0.000
9.067	0.025	0.165	366.0	0.000
9.333	0.025	0.172	386.9	0.000
9.600	0.025	0.178	408.2	0.000
9.867	0.025	0.185	429.8	0.000
10.13	0.025	0.192	451.9	0.000
10.40 10.67	0.025 0.025	0.198 0.205	474.3 497.0	0.000
10.07	0.025	0.203	520.2	0.000
11.20	0.025	0.219	543.6	0.000
11.47	0.025	0.225	567.4	0.000
11.73	0.025	0.232	591.6	0.000
12.00	0.025	0.239	616.0	0.000
12.27	0.025	0.246	640.8	0.000
12.53 12.80	0.025 0.025	0.252 0.259	666.0 691.4	0.000
13.07	0.025	0.266	717.2	0.000
13.33	0.025	0.273	743.3	0.000
13.60	0.025	0.279	769.6	0.000
13.87	0.025	0.286	796.3	0.000
14.13	0.025	0.293	823.3	0.000
14.40 14.67	0.025 0.025	0.299 0.306	850.6 878.2	0.000
14.07	0.025	0.312	906.1	0.000
15.20	0.024	0.319	934.2	0.000
15.47	0.024	0.325	962.7	0.000
15.73	0.024	0.332	991.4	0.000
16.00	0.024	0.338	1020.	0.000
16.27	0.024	0.345	1049.	0.000
16.53 16.80	0.023 0.023	0.351 0.357	1079. 1109.	0.000
	5.525	3.337		3.000

17.07 17.33 17.60 17.87 18.13 18.40 18.67	0.023 0.023 0.022 0.022 0.022 0.021 0.021	0.363 0.369 0.375 0.381 0.387 0.393	1139. 1169. 1200. 1231. 1262. 1293. 1325.	0.000 0.000 0.000 0.000 0.000 0.000
18.93	0.021	0.404	1357.	0.000
19.20 19.47	0.020 0.020	0.410 0.415	1389. 1421.	0.000
19.73	0.019	0.420	1454.	0.000
20.00	0.019 0.018	0.425 0.430	1487. 1520.	0.000
20.53	0.018	0.435	1554.	0.000
20.80 21.07	0.017 0.017	0.440 0.444	1587. 1621.	0.000
21.07	0.017	0.449	1655.	0.000
21.60	0.015	0.453	1690.	0.000
21.87 22.13	0.014 0.014	0.457 0.461	1724. 1759.	0.000
22.40	0.013	0.464	1794.	0.000
22.67	0.012	0.467	1830.	0.000
22.93 23.20	0.010 0.009	0.470 0.473	1865. 1901.	0.000
23.47	0.007	0.475	1937.	0.000
23.73	0.005	0.477	1973.	0.000
24.00 24.27	0.000	0.478 0.000	2010. 2046.	0.000

Name : Tank 1
Tank Name: Tank 1

Dimensions

Depth: 24ft.
Tank Type: Circular
Diameter: 24 ft.
Length: 110 ft.
Discharge Structure
Riser Height: 2 ft.
Riser Diameter: 24 in.

Orifice 1 Diameter: 2 in. Elevation: 0 ft.

Element Flows To:

Outlet 1 Outlet 2

Tank Hydraulic Table

Stage(ft)	Area(acr)	Volume(acr-ft)	Dschrg(cfs)	Infilt(cfs)
0.000	0.000	0.000	0.000	0.000
0.267	0.013	0.002	0.054	0.000
0.533	0.018	0.006	0.077	0.000
0.800	0.022	0.012	0.094	0.000
1.067	0.025	0.018	0.109	0.000
1.333	0.028	0.025	0.121	0.000

1.600 1.867 2.133 2.400 2.667 2.933 3.200 3.467 3.733 4.000 4.267 4.533 4.800 5.067 5.333	0.030 0.032 0.034 0.036 0.038 0.040 0.041 0.043 0.044 0.045 0.046 0.047 0.048 0.049	0.033 0.041 0.050 0.059 0.069 0.080 0.091 0.102 0.113 0.125 0.137 0.150 0.163 0.176 0.189	0.133 0.144 1.102 5.090 10.77 17.74 25.79 34.79 44.65 55.30 66.69 78.76 91.49 104.8 118.8	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5.600 5.867 6.133 6.400 6.667 6.933	0.051 0.052 0.053 0.054 0.054	0.203 0.216 0.230 0.245 0.259 0.274	133.3 148.4 163.9 180.0 196.6 213.7	0.000 0.000 0.000 0.000 0.000
7.200 7.467 7.733 8.000 8.267 8.533	0.056 0.056 0.057 0.057 0.058 0.058	0.288 0.303 0.318 0.333 0.349 0.364	231.2 249.2 267.7 286.6 305.9 325.6	0.000 0.000 0.000 0.000 0.000
8.800 9.067 9.333 9.600 9.867 10.13	0.058 0.059 0.059 0.059 0.060 0.060	0.380 0.395 0.411 0.427 0.443 0.459	345.7 366.2 387.1 408.4 430.1 452.1	0.000 0.000 0.000 0.000 0.000
10.40 10.67 10.93 11.20 11.47 11.73	0.060 0.060 0.060 0.060 0.061 0.061	0.475 0.491 0.507 0.523 0.539 0.555	474.5 497.3 520.4 543.9 567.7 591.8	0.000 0.000 0.000 0.000 0.000
12.00 12.27 12.53 12.80 13.07 13.33	0.061 0.061 0.061 0.060 0.060 0.060	0.571 0.587 0.604 0.620 0.636 0.652	616.3 641.1 666.2 691.7 717.5 743.5	0.000 0.000 0.000 0.000 0.000
13.60 13.87 14.13 14.40 14.67 14.93	0.060 0.060 0.060 0.059 0.059 0.059	0.668 0.684 0.700 0.716 0.731 0.747	769.9 796.6 823.6 850.9 878.5 906.4	0.000 0.000 0.000 0.000 0.000
15.20 15.47 15.73 16.00 16.27 16.53	0.058 0.058 0.058 0.057 0.057	0.763 0.778 0.794 0.809 0.824 0.839	934.5 963.0 991.7 1020. 1050.	0.000 0.000 0.000 0.000 0.000

16.80	0.056	0.854	1109.	0.000
17.07	0.055	0.869	1139.	0.000
17.33	0.054	0.883	1169.	0.000
17.60	0.054	0.898	1200.	0.000
17.87	0.053	0.912	1231.	0.000
18.13	0.052	0.926	1262.	0.000
18.40	0.051	0.940	1294.	0.000
18.67	0.050	0.953	1325.	0.000
18.93	0.049	0.967	1357.	0.000
19.20	0.048	0.980	1389.	0.000
19.47	0.047	0.993	1422.	0.000
19.73	0.046	1.005	1455.	0.000
20.00	0.045	1.017	1487.	0.000
20.27	0.044	1.029	1521.	0.000
20.53	0.043	1.041	1554.	0.000
20.80	0.041	1.052	1588.	0.000
21.07	0.040	1.063	1622.	0.000
21.33	0.038	1.073	1656.	0.000
21.60	0.036	1.083	1690.	0.000
21.87	0.034	1.092	1725.	0.000
22.13	0.032	1.101	1760.	0.000
22.40	0.030	1.110	1795.	0.000
22.67	0.028	1.117	1830.	0.000
22.93	0.025	1.124	1866.	0.000
23.20	0.022	1.131	1901.	0.000
23.47	0.018	1.136	1937.	0.000
23.73	0.013	1.140	1973.	0.000
24.00	0.000	1.142	2010.	0.000
24.27	0.000	0.000	2047.	0.000

MITIGATED LAND USE

ANALYSIS RESULTS

Flow Frequency Return Periods for Predeveloped. POC #1

Return Period	Flow(cfs)
2 year	0.135754
5 year	0.320869
10 year	0.403308
25 year	0.672722

Flow Frequency Return Periods for Mitigated. POC #1 Return Period Flow(cfs)

eturn Period	Flow(cis)
year	0.105202
year	0.168113
0 year	0.224668
5 year	0.372554
year 0 year	0.16811 0.22466

Yearly Peaks for Predeveloped and Mitigated. POC #1

Year	Predeveloped	Mitigated
1961	0.101	0.031
1962	0.011	0.052
1963	0.279	0.115

Ranked Yearly Peaks for Predeveloped and Mitigated. POC #1 Rank Predeveloped Mitigated

Rank	Predeveloped	Mitigate
1	1.0136	0.6194
2	0.5388	0.2756
3	0.4562	0.2461
4	0.3989	0.2229
5	0.3643	0.1879
6	0.3251	0.1774
7	0.3234	0.1742
8	0.3203	0.1668
9	0.3028	0.1654
10	0.2890	0.1631
11	0.2793	0.1547
12	0.2498	0.1468
13	0.2456	0.1444
14	0.2248	0.1434
15	0.2146	0.1374
16	0.1889	0.1365
17	0.1832	0.1272
18	0.1781	0.1231

19	0.1558	0.1148
20	0.1419	0.1068
21	0.1299	0.1037
22	0.1293	0.1016
23	0.1182	0.0969
24	0.1174	0.0948
25	0.1151	0.0880
26	0.1008	0.0758
27	0.0937	0.0518
28	0.0876	0.0450
29	0.0874	0.0414
30	0.0581	0.0351
31	0.0544	0.0322
32	0.0334	0.0314
33	0.0294	0.0311
34	0.0220	0.0308
35	0.0125	0.0294
36	0.0107	0.0289
37	0.0002	0.0272
38	0.0001	0.0256

POC #1

Facility FAILED duration standard for 1+ flows.

Flow(CFS)	Predev	Dev Per	centage	Pass/Fail
0.0136	1455	6976	479	Fail
0.0175	1260	5926	470	Fail
0.0214	1111	4917	442	Fail
0.0254	985	3724	378	Fail
0.0293	896	2360	263	Fail
0.0333	817	1449	177	Fail
0.0372	742	476	64	Pass
0.0411	659	442	67	Pass
0.0451	605	410	67	Pass
0.0490	555	372	67	Pass
0.0529	516	354	68	Pass
0.0569	480	331	68	Pass
0.0608	440	309	70	Pass
0.0648	408	290	71	Pass
0.0687	369	265	71	Pass
0.0726	348	253	72	Pass
0.0766	317	234	73	Pass
0.0805	296	224	75	Pass
0.0844	277	208	75	Pass
0.0884	264	197	74	Pass
0.0923	243	182	74	Pass
0.0962	216	164	75	Pass
0.1002	205	150	73	Pass
0.1041	181	141	77	Pass
0.1081	166	132	79	Pass
0.1120	154	126	81	Pass
0.1159	143	114	79	Pass
0.1199	129	108	83	Pass
0.1238	124	97	78	Pass
0.1277	117	88	75	Pass

0.1317	110	87	79 70	Pass
0.1356	100	79	79	Pass
0.1395	93	69	74	Pass
0.1435	86	65	75	Pass
0.1474	83	59	71	Pass
0.1514	75	53	70	Pass
0.1553	69	46	66	Pass
0.1592	66	41	62	Pass
0.1632	64	40	62	Pass
0.1671	59	33	55	Pass
0.1710	56	33	58	Pass
0.1750	56	32	57	Pass
0.1789	54	29	53	Pass
0.1829	51	28	54	Pass
0.1868	49	25	51	Pass
0.1907	46	22	47	Pass
0.1947	43	22	51	Pass
0.1986	41	20	48	Pass
0.2025	40	20	50	Pass
0.2065	37	18	48	Pass
0.2104	36	18	50	Pass
0.2143	33	17	51	Pass
0.2183	31	15	48	Pass
0.2222	29	13	44	Pass
0.2262	27	10	37	Pass
0.2301	26	10	38	Pass
0.2340	25	10	40	Pass
0.2380	25	10	40	Pass
0.2419	25	10	40	Pass
0.2458	24	9	37	Pass
0.2498	23	8	34	Pass
0.2537	19	8	42	Pass
0.2577	18	8	44	Pass
0.2616	18	8	44	Pass
0.2655	18	8	44	Pass
0.2695	18	8	44	Pass
0.2734	18	8	44	Pass
0.2773	16	6	37	Pass
0.2813	15	6	40	Pass
0.2852	14	6	42	Pass
0.2891	13	6	46	Pass
0.2931	12	5	41	Pass
0.2970	12	5	41	Pass
0.3010	12	5	41	Pass
0.3049	11	5	45	Pass
0.3019	10	5	50	Pass
0.3128	10	5	50	Pass
0.3120	10	5	50	Pass
0.3206	10	5	50	Pass
0.3246	8	5	62	
0.3246	o 7	5	62 71	Pass Pass
0.3265	7	5	71 71	
0.3324	7	5	71 71	Pass Pass
0.3304	7	5	71 71	Pass
0.3443	7	5	71 71	Pass
0.3443	6	5	83	Pass
0.3402	6	5	83	Pass
0.3341	U	J	0.3	газэ

0.3561	6	5	83	Pass
0.3600	6	4	66	Pass
0.3639	6	4	66	Pass
0.3679	5	4	80	Pass
0.3718	5	4	80	Pass
0.3758	5	4	80	Pass
0.3797	5	4	80	Pass
0.3836	5	4	80	Pass
0.3876	5	4	80	Pass
0.3915	5	4	80	Pass
0.3954	5	3	60	Pass
0.3994	4	3	75	Pass
0.4033	4	2	50	Pass

The development has an increase in flow durations for more than a 10% increase from the 2 year to the 10 year flow.

Flow Frequency Return Periods for Predeveloped. POC #2

Return Period	Flow(cfs)
2 year	0.421698
5 year	0.849425
10 year	0.969455
25 year	1.576476

Flow Frequency Return Periods for Mitigated. POC #2 Return Period Flow(cfs)

Return Period	Flow(CIS)
2 year	0.166336
5 year	0.530225
10 year	0.786194
25 year	1.186765

Yearly Peaks for Predeveloped and Mitigated. POC #2

Year	Predeveloped	Mitigated
1961	0.318	0.082
1962	0.168	0.107
1963	0.683	0.192
1964	0.353	0.202
1965	0.224	0.150
1966	0.361	0.101
1967	0.317	0.119
1968	0.559	0.373
1969	0.407	0.139
1970	0.840	0.339
1971	0.956	1.107
1972	0.423	0.137
1973	0.156	0.069
1974	0.711	0.502
1975	0.421	0.217
1976	0.328	0.109
1977	0.124	0.066
1978	0.252	0.128
1979	0.342	0.156
1980	0.356	0.210
1981	0.453	0.152
1982	0.712	0.684
1983	0.907	0.759
1984	2.422	1.171
1985	0.565	0.441
1986	0.617	0.164
1987	1.244	0.658
1988	0.435	0.323

1989	0.816	0.281
1990	0.502	0.169
1991	0.319	0.125
1992	0.138	0.069
1993	1.131	0.430
1994	0.774	0.667
1995	0.304	0.092
1996	0.892	1.228
1997	0.138	0.069
1998	0.890	0.277

Ranked	Yearly Peaks for	Predeveloped and Mitigated. POC #2
Rank	Predeveloped	Mitigated
1	2.4220	1.2278
2	1.2443	1.1707
3	1.1313	1.1068
4	0.9560	0.7595
5	0.9073	0.6840
6	0.8915	0.6671
7	0.8904	0.6583
8	0.8405	0.5022
9	0.8162	0.4413
10	0.7743	0.4303
11	0.7122	0.3730
12	0.7110	0.3389
13	0.6835	0.3230
14	0.6174	0.2811
15	0.5653	0.2769
16	0.5588	0.2167
17	0.5015	0.2097
18	0.4525	0.2023
19	0.4351	0.1918
20	0.4229	0.1690
21	0.4205	0.1638
22	0.4072	0.1559
23	0.3613	0.1520
24	0.3557	0.1503
25	0.3530	0.1390
26	0.3423	0.1371
27	0.3280	0.1281
28	0.3191	0.1247
29	0.3184	0.1188
30	0.3175	0.1093
31	0.3039	0.1072
32	0.2522	0.1012
33	0.2236	0.0922
34	0.1679	0.0817
35	0.1555	0.0690
36	0.1381	0.0687
37	0.1381	0.0686
38	0.1238	0.0660

POC #2

The Facility PASSED

The Facility PASSED.

<pre>Flow(CFS)</pre>	Predev	Dev Per	rcentage	e Pass/Fail
0.0422	2946	2581	87	Pass
0.0515	2418	1888	78	Pass
0.0609	2014	1536	76	Pass
0.0703	1710	1169	68	Pass
0.0796	1483	973	65	Pass
0.0890	1270	792	62	Pass
0.0984	1119	658	58	Pass
0.1077	983	533	54	Pass

() 548() 28 19 67 Pagg	0.1171 0.1265 0.1358 0.1452 0.1546 0.1639 0.1733 0.1827 0.1920 0.2014 0.2108 0.2201 0.2295 0.2389 0.2482 0.2576 0.2670 0.2763 0.2857 0.2951 0.3044 0.3138 0.3232 0.3325 0.3419 0.3513 0.3606 0.3700 0.3794 0.3887 0.3981 0.4075 0.4168 0.4262 0.4356 0.4449 0.4543 0.4637 0.4730 0.4824 0.4918 0.5011 0.5105 0.5199 0.5292 0.5386 0.5480	867 774 685 623 562 512 458 422 388 357 282 257 232 213 200 184 170 155 144 133 118 107 101 94 85 73 66 46 40 38 42 40 38 40 40 40 40 40 40 40 40 40 40 40 40 40	409 312 193 160 142 127 110 100 95 83 76 75 76 63 95 53 49 46 39 38 36 34 31 30 30 29 27 26 25 24 24 24 23 20 20 19	47 40 35 30 28 27 28 28 29 32 33 34 35 39 41 42 41 44 46 47 50 50 48 51 52 57 60 63 62 64 68 67	Passssssssssssssssssssssssssssssssssss
	0.4824 0.4918 0.5011 0.5105 0.5199 0.5292 0.5386	40 38 37 36 32 31 29	24 24 23 21 20 20	60 63 62 58 62 64 68	Pass Pass Pass Pass Pass Pass Pass

0.6510	19	17	89	Pass
0.6604	18	14	77	Pass
0.6697	18	13	72	Pass
0.6791	18	13	72	Pass
0.6885	17	12	70	Pass
0.6978	15	12	80	Pass
0.7072	15	12	80	Pass
0.7166	13	12	92	Pass
0.7259	12	12	100	Pass
0.7353	12	11	91	Pass
0.7447	12	11	91	Pass
0.7540	12	10	83	Pass
0.7634	12	8	66	Pass
0.7728	12	7	58	Pass
0.7821	11	7	63	Pass
0.7915	10	7	70	Pass
0.8009	10	7	70	Pass
0.8102	10	7	70	Pass
0.8196	9	7	77	Pass
0.8290	9	7	77	Pass
0.8383	9	7	77	Pass
0.8477	8	7	87	Pass
0.8571	8	6	75	Pass
0.8664	8	6	75	Pass
0.8758	8	6	75	Pass
0.8852	8	5	62	Pass
0.8945	6	5	83	Pass
0.9039	6	5	83	Pass
0.9133	5	5	100	Pass
0.9226	5	5	100	Pass
0.9320	5	5	100	Pass
0.9414	5	5	100	Pass
0.9507	5	5	100	Pass
0.9601	4	4	100	Pass
0.9695	4	4	100	Pass

Perlnd and Implnd Changes

No changes have been made.

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc, Applied Marine Sciences Incorporated, the Alameda County Flood Control and Water Conservation District, EOA Incorporated, member agencies of the Alameda Countywide Clean Water Program, member agencies of the San Mateo Countywide Water Pollution Prevention Program, member agencies of the Santa Clara Valley Urban Runoff Pollution Prevention Program or any other LOU Participants or authorized representatives of LOU Participants be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc., Applied Marine Sciences Incorporated, the Alameda County Flood Control and Water Conservation District, EOA Incorporated or any member agencies of the LOU Participants or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by Clear Creek Solutions, Inc. 2005-2007; All Rights Reserved.